Abstract

This paper successfully interlaced floating catalyst chemical vapor deposition-grown carbon nanotube film and ultrathin carbon fiber prepreg to achieve strong and flexible carbon nanotube/carbon fiber hybrid composites with high carbon nanotube loading. Epoxidation was also introduced to improve interlaminar interfacial bonding. It was found that pristine carbon nanotube film/carbon fiber interply hybrid composite (carbon fiber/carbon nanotube/carbon fiber) showed sudden and brittle failure, while epoxidation caused a gradual failure behavior. Hybrid effect analysis suggested that the improved tensile performance and synergistic effect of epoxidized carbon nanotube film/carbon fiber hybrid composite were attributed to good load transfer and suppressed delamination induced by improved interfacial bonding. In addition carbon fiber/carbon nanotube/carbon fiber manifested excellent damping capacity with the maximum loss factor of 0.13. The in-plane electrical conductivity of composite with global carbon nanotube content of 21 wt% increased to the same order of magnitude as carbon nanotube film composite. The excellent mechanical, damping, and electrical properties demonstrated great potential for both structural and multifunctional applications of the resultant hybrid composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.