Abstract

Fibre-reinforced composite thin-walled structures are often subjected to complex working conditions with multiple loads. By combining various fibres, continuous hybrid fibre-reinforced composites (CHFRCs) can achieve good comprehensive performances and positive hybrid effects, which will improve the ability of composite structures to withstand complicated loads. Coaxial CHFRCs were prepared quickly without the use of a mould by 3D printing. The influence of the hatch spacing on hybrid effect, dynamic and static bending properties and failure mode were investigated by the research of fibre content, hybrid ratio, and interface. The results showed that the 3D-printed coaxial CHFRCs had a positive hybrid effect for the impact strength. A high positive hybrid effect could be attained by modifying the process parameters. At the same time, the composite’s comprehensive performances were enhanced. The impact strength of 3D-printed coaxial CHFRCs was 1.94 times greater than that of the continuous carbon-fibre-reinforced composites, and its flexural strength was 1.75 times greater than that of the continuous Kevlar-fibre-reinforced composites at same process parameter. With their high comprehensive performances and high positive hybrid effect, 3D-printed coaxial CHFRCs have a lot of potential use in thin-walled structures in areas such aerospace.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call