Abstract

Scalable fabrication of graphene nanoribbons with narrow band gaps has been a nontrivial challenge. Here, we have developed a simple approach to access narrow band gaps using hybrid edge structures. Bottom-up liquid-phase synthesis of bent N = 6/8 armchair graphene nanoribbons (AGNRs) has been achieved in high efficiency through copolymerization between an o-terphenyl monomer and a naphthalene-based monomer, followed by Scholl oxidation. An unexpected 1,2-aryl migration has been discovered, which is responsible for introducing kinked structures into the GNR backbones. The N = 6/8 AGNRs have been fully characterized to support the proposed structure and show a narrow band gap and a relatively high electrical conductivity. In addition, their application in efficient gas sensing has also been demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call