Abstract
The term "hybrid dysgenesis" describes a syndrome of genetic effects which sometimes results when Drosophila melanogaster from wild populations are outcrossed; this syndrome often includes male recombination as well as enhanced rates of genic and chromosomal mutation, sterility, and transmission ratio distortion. In this study, we have examined the mechanism of T-007-induced male recombination by genetically characterizing third chromosomes generated by an exchange in a well-marked euchromatic region. Most recombinant chromosomes were sequentially normal, and no recessive lethal events at the point of exchange were recovered. The results demonstrate that although some recombinants may be generated by nonhomologous chromosome (or chromatid) breakage and reunion, the predominant effect of T-007 is through an enhanced rate of normal mitotic exchange. The rate of mitotic exchange is also increased by ionizing radiation and chemical mutagens; we suggest that the common factor in all three cases is the induction of single strand breaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.