Abstract

Dual-cure hybrid polymer networks were prepared by sequential thiol–ene photopolymerization followed by thermal ring-opening polymerization of benzoxazines with the aim of increasing the glass transition temperature range of thiol–ene based materials and improving the processibility of polybenzoxazines. The hybrid networks are derived from a multifunctional, dually-polymerizable monomer possessing both bis-“ene” and bis-benzoxazine moieties enabling the formation of two networks through a common constituent monomer when combined with a multifunctional thiol. The photopolymerization kinetics of the thiol–ene reaction were investigated by real-time infrared spectroscopy. Sequential thermal ring-opening polymerization of the benzoxazine moieties incorporated into the thiol–ene network was characterized by FTIR and differential scanning calorimetry. The glass transition of the hybrid material was observed at 150°C; however, competing thiol–ene (radical-mediated) and thiol–benzoxazine (nucleophilic ring-opening) reactions during the UV cure yield a heterogeneous network structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.