Abstract

This study proposed a new method for multi-focus image fusion using hybrid wavelet and classifier. The image fusion process was formulated as a two-class classification problem: in and out-of-focus classes. First, a six-dimensional feature vector was extracted using sub-bands of dual-tree complex wavelet transform (DT-CWT) coefficients from the source images, which were then projected by a trained two-class support vector machine (SVM) to the class labels. A bacterial foraging optimization algorithm (BFOA) was developed to obtain the optimal parameters of the SVM. The output of the classification system was used as a decision matrix for fusing high-frequency wavelet coefficients from multi-focus source images in different directions and decomposition levels of the DT-CWT. After the high and low-frequency coefficients of the source images were fused, the final fused image was obtained using the inverse DT-CWT. Several existing methods were compared with the proposed method. Experimental results showed that our presented method outperformed the existing methods, in visual effect and in objective evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.