Abstract

Surfing data mining techniques for representing data sources have specifically attracted much attention among researchers. Given the curse of dimensionality in representing text using the traditional Bag-of-words models, lower-dimensional representation of text has been an important line of research due to its impact on many prediction, and recommendation tasks. This thesis studies two main different viewpoints in text representation using content and citation information and then, different existing approaches along with their advantages, limitations and drawbacks are reviewed. A novel hybrid distributed technique for text representation is proposed where the textual content of documents is projected into a vector representation using an artificial neural network . To test the performance of the new proposed technique, the well known link-prediction problem is selected to serve as a benchmark. A comparison is performed with other common techniques by predicting the existence of citation links between tuple of papers in a large citation graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.