Abstract

We demonstrate a hybrid distributed acoustic and temperature sensor (DATS) using a commercial off-the-shelf (COTS) distributed feedback (DFB) laser, a single-mode optical fiber, and a common receiver block. We show that the spectral and frequency noise characteristics of the laser, combined with a suitable modulation scheme, ensure the inter-pulse incoherence and intra-pulse coherence conditions required for exploiting the fast denoising benefits of cyclic Simplex pulse coding in the hybrid measurement. The proposed technique enables simultaneous, distributed measurement of vibrations and temperature, with key industrial applications in structural health monitoring and industrial process control systems. The sensor is able to clearly identify a 500 Hz vibration at 5 km distance along a standard single-mode fiber and simultaneously measure the temperature profile along the same fiber with a temperature resolution of less than 0.5°C with 5 m spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call