Abstract
This paper presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) and data independence (unsupervised criterion). Classification accuracy is used as a metric to evaluate the performance of the method. By minimizing the structural risk, projection originated from the decision boundaries directly improves the classification performance from a supervised perspective. From an unsupervised perspective, projection can also be obtained based on maximum independence among features (or attributes) in data to indirectly achieve better classification accuracy over more intrinsic representation of the data. Orthogonality interrelates the two sets of projections such that minimum redundancy exists between the projections, leading to more effective dimensionality reduction. Experimental results show that the proposed hybrid dimensionality reduction method that satisfies both criteria simultaneously provides higher classification performance, especially for noisy data sets, in relatively lower dimensional space than various existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.