Abstract

In this paper, a hybrid algorithm based on differential evolution (DE), namely HDE, is proposed to minimize the total completion time criterion of the no-wait flow-shop scheduling problem (NFSSP) with sequence-dependent setup times (SDSTs) and release dates (RDs), which is a typical NP-hard combinatorial optimization problem with strong engineering background. Firstly, to make DE suitable for solving flow-shop scheduling problem, a largest-order-value (LOV) rule is used to convert the continuous values of individuals in DE to job permutations. Secondly, a speed-up evaluation method is developed according to the property of the NFSSP with SDSTs and RDs. Thirdly, after the DE-based exploration, a problem-dependent local search is developed to emphasize exploitation. Due to the reasonable balance between DE-based global search and problem-dependent local search as well as the utilization of the speed-up evaluation, the NFSSP with SDSTs and RDs can be solved effectively and efficiently. Simulation results and comparisons demonstrate the superiority of HDE in terms of searching quality, robustness, and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call