Abstract

A new hybrid differential evolution and particle swarm optimization algorithm called RWDEPSO is proposed, which combines the advantages of particle swarm optimization (PSO) with fast convergence speed and differential evolution (DE) with high search accuracy. In the new algorithm, the random inertia weight is introduced to strengthen the global exploration ability and local exploition ability of the PSO optimization process. Then, the optimized individuals of PSO and DE are cross-operated to generate new individuals, which inherit the dominant characteristics of both algorithms. Comparing with the simulations of the other intelligent algorithms in six typical Benchmark functions, the results show that the proposed algorithm RWDEPSO has faster convergence speed and stronger global research ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.