Abstract

We report hybrid density functional theory-molecular mechanics (DFT/MM) calculations performed for glycine in water solution at different pH values. In this paper, we discuss several aspects of the quantum mechanics-molecular mechanics (QM/MM) simulations where the dynamics and spectral binding energy shifts are computed sequentially, and where the latter are evaluated over a set of configurations generated by molecular or Car-Parrinello dynamics simulations. In the used model, core ionization takes place in glycine as a quantum mechanical (QM) system modeled with DFT, and the solution is described with expedient force fields in a large molecular mechanical (MM) volume of water molecules. The contribution to the core electronic binding energy from all interactions within and between the two (DFT and MM) parts is accounted for, except charge transfer and dispersion. While the obtained results were found to be in qualitative agreement with experiment, their precision must be qualified with respect to the problem of counter ions, charge transfer and optimal division of QM and MM parts of the system. Results are compared to those of a recent study [Ottoson et al., J. Am. Chem. Soc., 2011, 133, 3120].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.