Abstract
Oscillometric blood pressure (BP) measurement devices are widely utilized as the primary automated BP measurement tools in non-specialist environments. However, their accuracy and reliability vary under different settings and for different age groups and health conditions. An essential constraint of current oscillometric BP measurement devices is their analysis algorithms' incapacity to capture the BP information encoded in the pattern of recorded oscillometric pulses to its fullest extent. In this paper, we propose a new 2D oscillometric data representation that enables a full characterization of arterial system and empowers the application of deep learning to extract the most informative features correlated with BP. A hybrid convolutional-recurrent neural network was developed to capture the oscillometric pulses morphological information as well as their temporal evolution over the cuff deflation period from the 2D structure, and estimate BP. The performance of the proposed method was verified on three oscillometric databases collected from the wrist and upper arms of 245 individuals. It was found that it achieves a mean error and a standard deviation of error of as low as 0.08 mmHg and 2.4 mmHg in the estimation of systolic BP, and 0.04 mmHg and 2.2 mmHg in the estimation of diastolic BP, respectively. Our proposed method outperformed the state-of-the-art techniques and satisfied the current international standards for BP monitors by a wide margin. The proposed method shows promise toward robust and objective BP estimation in a variety of patients and monitoring situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.