Abstract

In the present paper, a hybrid deep learning diagonal recurrent neural network controller (HDL-DRNNC) is proposed for nonlinear systems. The proposed HDL-DRNNC structure consists of a diagonal recurrent neural network (DRNN), whose initial values can be obtained through deep learning (DL). The DL algorithm, which is used in this study, is a hybrid algorithm that is based on a self-organizing map of the Kohonen procedure and restricted Boltzmann machine. The updating weights of the DRNN of the proposed algorithm are developed using the Lyapunov stability criterion. In this concern, simulation tasks such as disturbance signals and parameter variations are performed on mathematical and physical systems to improve the performance and the robustness of the proposed controller. It is clear from the results that the performance of the proposed controller is better than other existent controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.