Abstract

In the analysis of complex, large-scale dynamical systems it is often essential to decompose the overall dynamical system into a collection interacting subsystems. Because of implementation constraints, cost, and reliability considerations, a decentralized controller architecture is often required for controlling large-scale interconnected dynamical systems. In this paper, a novel class of fixed-order, energy-based hybrid decentralized controllers is proposed as a means for achieving enhanced energy dissipation in large-scale lossless and dissipative dynamical systems. These dynamic decentralized controllers combine a logical switching architecture with continuous dynamics to guarantee that the system plant energy is strictly decreasing across switching. The general framework leads to hybrid closed-loop systems described by impulsive differential equations. In addition, we construct hybrid dynamic controllers that guarantee that each subsystem-subcontroller pair of the hybrid closed-loop system is consistent with basic thermodynamic principles. Special cases of energy-based hybrid controllers involving state-dependent switching are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.