Abstract
Nowadays, NVIDIA's CUDA is a general purpose scalable parallel programming model for writing highly parallel applications. It provides several key abstractions – a hierarchy of thread blocks, shared memory, and barrier synchronization. This model has proven quite successful at programming multithreaded many core GPUs and scales transparently to hundreds of cores: scientists throughout industry and academia are already using CUDA to achieve dramatic speedups on production and research codes. In this paper, we propose a parallel programming approach using hybrid CUDA OpenMP, and MPI programming, which partition loop iterations according to the number of C1060 GPU nodes in a GPU cluster which consists of one C1060 and one S1070. Loop iterations assigned to one MPI process are processed in parallel by CUDA run by the processor cores in the same computational node.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.