Abstract

Hybrid concentrated solar thermal power (CSP) and photovoltaic (PV) plants are gaining relevance because they combine their advantages: easy installation and low cost of PV plus dispatchability of CSP. This paper presents results of a techno-economic modelling of this hybrid approach for sites in Jordan, Tunisia and Algeria. Local boundary conditions such as meteorology, cost and electricity demand have been considered to determine the best configurations for these three sites. Different CSP technologies with thermal energy storage have been selected. Hybridization with natural gas has also been included. The optimization is done towards minimizing the LCOE while covering the electrical demand 24/7. Results are presented for different CO2 emissions ranges, as the use of fossil fuel has a strong impact on the LCOE and for environmental reasons, it may be preferred to be kept to a minimum. For most of the cases analyzed, the fraction of energy from PV that leads to minimum LCOE is lower than the energy from CSP. It is shown that for countries with a high fuel price, the use of natural gas reduces the LCOE until a share from this source of about 20%. A higher integration of fossil fuel for sites rich in solar irradiation is considered not advantageous if the price of natural gas is above EUR 40/MWh.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.