Abstract

This paper describes a new memristor crossbar architecture that is proposed for use in a high density cache design. This design has less than 10% of the write energy consumption than a simple memristor crossbar. Also, it has up to 3 times the bit density of an STT-MRAM system and up to 11 times the bit density of an SRAM architecture. The proposed architecture is analyzed using a detailed SPICE analysis that accounts for the resistance of the wires in the memristor structure. Additionally, the memristor model used in this work has been matched to specific device characterization data to provide accurate results in terms of energy, area, and timing. The proposed memory system was analyzed by modeling two different devices that vary in resistance range and switching time. This system does not require that the memristor devices have inherent diode effects which limit alternate current paths. Therefore this system is capable of utilizing a much broader class of devices.An architectural analysis has also been completed that shows how the memory system may perform as a cache memory. A hybrid cache structure was used to alleviate the long write latencies of memristor devices. This approach consisted of the tag array being made of SRAM cells while the data array was made of the memristor circuit proposed. This hybrid scheme allows multiple reads and writes to concurrently access different sub-arrays within a cache. The performance of these novel memristor based caches was compared to SRAM and STT-MRAM based caches through detailed simulations. The results show that the memristor caches are denser and allow better performance along with lower system power when compared to the STT-MRAM and SRAM caches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call