Abstract

Cardioid microphones/hydrophones are highly directional acoustical sensors, which enjoy easy availability via numerous commercial vendors for professional use. Collocating three such cardioids in orthogonal orientation to each other, the resulting triad would be sharply directional yet physically compact, while decoupling the incident signal's time-frequency dimensions from its azimuth-elevation directional dimensions, thereby simplifying signal-processing computations. This paper studies such a cardioid triad's azimuth-elevation direction-of-arrival estimation accuracy, which is characterized here by the hybrid Cramér-Rao bound. This analysis allows the cardioidicity index (α) to be stochastically uncertain, applies to any cardioidic order (k), and is valid for any real-valued incident signal regardless of the signal's time-frequency structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.