Abstract

We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable: the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. It can lead to an energy-transport model, obtained using a Spherical Harmonic Expansion model as intermediate step. The quantum transport is described by the Schrodinger equation. The aim of this work is to focus on the derivation of boundary conditions at the interface between the classical and quantum regions. Numerical simulations are provided for a resonant tunneling diode with the energy-transport model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.