Abstract

BackgroundThe academia has increasingly acknowledged the superior biomechanical performance of the hybrid fixation technique in recent years. However, there is a lack of research on the hybrid fixation technique using BCS (Bilateral Cortical Screws) and BMCS (Bilateral Modified Cortical Screws). This study aims to investigate the biomechanical performance of the BCS and BMCS hybrid fixation technique in transforaminal lumbar interbody fusion (TLIF) at the L4-L5 segment in a complete lumbar-sacral finite element model. MethodsThree cadaver specimens are used to construct three lumbar-sacral finite element models. The biomechanical properties of various fixation technologies (BCS-BCS, BMCS-BMCS, BMCS-BCS, and BCS-BMCS) are evaluated at the L4-5 segment with a TLIF procedure conducted, including the range of motion (ROM) of the L4-5 segment, as well as the stress experienced by the cage, screws, and rods. The testing is conducted under specific loading conditions, including a compressive load of 400 N and a torque of 7.5Nm, subjecting the model to simulate flexion, extension, lateral bending, and rotation. ResultsNo significant variations are seen in the ROM at the L4-5 segment when comparing the four fixation procedures during flexion and extension. However, when it comes to lateral bending and rotation, the ROM is ordered in descending order as BCS-BCS, BCS-BMCS, BMCS-BMCS, and BMCS-BCS. The maximum stress experienced by the cage is observed to be highest within the BMCS-BCS technique during movements including flexion, extension, and lateral bending. Conversely, the BMCS-BMCS technique exhibits the highest cage stress levels during rotational movements. The stress applies to the screws and rods order the sequence of BCS-BCS, BCS-BMCS, BMCS-BCS, and BMCS-BMCS throughout all four working conditions. ConclusionThe BMCS-BCS technique shows better biomechanical performance with less ROM and lower stress on the internal fixation system compared to other fixation techniques. BMCS-BMCS technology has similar mechanical performance to BMCS-BCS but has more contact area between screws and cortical bone, making it better for patients with severe osteoporosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.