Abstract

In recent years, cloud computing technologies have been developed rapidly in this computing world to provide suitable on-demand network access all over the world. A cloud service provider offers numerous types of cloud services to the user. But the most significant issue is how to attain optimal virtual machine (VM) allocation for the user and design an efficient big data storage platform thereby satisfying the requirement of both the cloud service provider and the user. Therefore, this paper presents two novel strategies for optimizing VM resource allocation and cloud storage. An optimized cloud cluster storage service is introduced in this paper using a binarization based on modified fuzzy c-means clustering (BMFCM) algorithm to overcome the negative issues caused by the repetitive nature of the big data traffic. The BMFCM algorithm utilized can be implemented transparently and can also address problems associated with massive data storage. The VM selection is optimized in the proposed work using a hybrid COOT-reverse cognitive fruit fly (RCFF) optimization algorithm. The main aim of this algorithm is to improve the massive big data traffic and storage locality. The CPU utilization, VM power, memory dimension and network bandwidth are taken as the fitness function of the hybrid COOT-RCFF algorithm. When implemented in CloudSim and Hadoop, the proposed methodology offers improvements in terms of completion time, overall energy consumption, makespan, user provider satisfaction and load ratio. The results show that the proposed methodology improves the execution time and data retrieval efficiency by up to 32% and 6.3% more than the existing techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call