Abstract

In machining of soft alloys, the sticky nature of localized material instigated by tool-work interaction exacerbates the tribological attitude and ultimately demeans it machinability. Moreover, the endured severe plastic deformation and originated thermal state alter the metallurgical structure of machined surface and chips. Also, the used tool edges are worn/damaged. Implementation of cooling-lubrication (C/L) agents to reduce friction at faying surfaces can ameliorate overall machinability. That is why, this paper deliberately discussed the influence of pure C/L methods, i.e., such as dry cutting (DC) and nitrogen cooling (N2), as well as hybrid C/L strategies, i.e., nitrogen minimum quantity lubrication (N2MQL) and Ranque–Hilsch vortex tube (RHVT) N2MQL conditions in turning of Al 7075-T6 alloy, respectively. With respect to the variation of cutting speed and feed rate, at different C/Ls, the surface roughness, tool wear, and chips are studied by using SEM and 3D topographic analysis. The mechanism of heat transfer by the cooling methods has been discussed too. Furthermore, the new chip management model (CMM) was developed under all C/L conditions by considering the waste management aspects. It was found that the R-N2MQL has the potential to reduce the surface roughness up to 77% and the tool wear up to 118%. This significant improvement promotes sustainability in machining industry by saving resources. Moreover, the CMM showed that R-N2MQL is more attractive for cleaner manufacturing system due to a higher recyclability, remanufacturing, and lower disposal of chips.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call