Abstract
Photonic delay-based reservoir computers (RC) have emerged as an attractive high-speed, low-power alternative to traditional digital hardware for AI. We demonstrate experimentally a novel hybrid RC scheme in which input data is first preprocessed through several convolutional layers, either trained or untrained, digitally to generate novel feature maps. These random feature maps are then processed through an optoelectronic implementation of delay-based RC. Using the MNIST dataset of handwritten digits, experiments of our proposed hybrid scheme achieve classification error of 1.6% using untrained convolutions, and an error of 1.1% using trained convolutions, results comparable to that of state-of-the-art machine learning algorithms. Additionally, our experimental implementation can offer a potential 10x decrease in model training time, compared to that of common digital alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.