Abstract

The goal of steganalysis is to unearth a concealed message hidden inside an innocent carrier by steganography. Steganography in the hands of unlawful people can pose a great threat to society. Secret message is embedded as a noise (residue) which silently disrupts the statistical nature of the carrier without visual transformation. For the purpose of unearthing covert communication, modeling this noise (residue) is a crucial factor. In this paper, a hybrid deep learning framework is proposed with convolutional neural network (CNN) to emphasize the need for residual based investigation for digital image steganalysis. In order to model the noise residuals, five types of handcrafted features are extracted, in which the first four types rely on acquiring noise residuals based on filtering by linear and nonlinear filters, and the fifth type relies on residual acquisition method based on Empirical Mode Decomposition (EMD). The extracted features are categorized using a robust CNN with a new parallel architecture that is capable of learning intricate details from input features to classify it as cover or stego. Mostly CNNs are trained with raw images, but in the proposed method, the 1-dimensional residual features are stacked into 2-dimensional grid and are then used to train the CNN. Three spatial content-adaptive and four spatial non-content-adaptive algorithms are used to evaluate the performance of the proposed architecture. The experimental results show the versatility and robustness of the proposed hybrid architecture towards these algorithms when compared to existing state-of-the-art steganalytic methods. A practical issue prevalent in deploying steganalysis in real-world is ‘mismatch scenario,’ and based on the experimentation done in this paper, the proposed architecture performs well under stego algorithm mismatch and payload mismatch scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.