Abstract

Reverse engineering of gene regulatory networks (GRNs) is the process of estimating genetic interactions of a cellular system from gene expression data. In this paper, we propose a novel hybrid systematic algorithm based on neurofuzzy network for reconstructing GRNs from observational gene expression data when only a medium-small number of measurements are available. The approach uses fuzzy logic to transform gene expression values into qualitative descriptors that can be evaluated by using a set of defined rules. The algorithm uses neurofuzzy network to model genes effects on other genes followed by four stages of decision making to extract gene interactions. One of the main features of the proposed algorithm is that an optimal number of fuzzy rules can be easily and rapidly extracted without overparameterizing. Data analysis and simulation are conducted on microarray expression profiles of S. cerevisiae cell cycle and demonstrate that the proposed algorithm not only selects the patterns of the time series gene expression data accurately, but also provides models with better reconstruction accuracy when compared with four published algorithms: DBNs, VBEM, time delay ARACNE, and PF subjected to LASSO. The accuracy of the proposed approach is evaluated in terms of recall and F-score for the network reconstruction task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.