Abstract

A hybrid control system is proposed for regulating an unknown nonlinear plant. The interface between the continuous-state plant and the discrete-event supervisor is designed using a fuzzy logic approach. The fuzzy logic interface partitions the continuous-state space into a finite number of regions. In each region, the original unknown nonlinear plant is approximated by a fuzzy logic-based linear model, then state-feedback controllers are designed for each linear model. A high-level supervisor coordinates (mode switching) the set of closed-loop systems in a stable and safe manner. The stability of the system is studied using nonsmooth Lyapunov functions. For illustration and verification purposes, this technique has been applied to the well-known inverted pendulum balancing problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.