Abstract

We propose a distributed and cooperative motion and task control scheme for a team of mobile robots that are subject to dynamic constraints including inter-robot collision avoidance and connectivity maintenance of the communication network. Moreover, each agent has a local high-level task given as a Linear Temporal Logic (LTL) formula of desired motion and actions. Embedded graph grammars (EGGs) are used as the main tool to specify local interaction rules and switching control modes among the robots, which is then combined with the model-checking-based task planning module. It is ensured that all local tasks are satisfied while the dynamic constraints are obeyed at all time. The overall approach is demonstrated by simulation and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.