Abstract
A hybrid control methodology is presented for autonomous rendezvous, proximity operations and docking of a pair of spacecraft. For the theoretical development of the control algorithms, the dynamics of the spacecraft are modeled using the Clohessy-Wiltshire-Hill equations, which result in a linear system of relative motion equations. Only in-plane motion is considered, resulting in a two-dimensional system, and the control input is the acceleration vector of the active spacecraft, constrained by a maximum thrust value. Individual controllers are designed for different phases of the of approach and transitions are governed by a hybrid supervising algorithm. The hybrid control algorithm is implemented both in MATLAB, using a simplified dynamic model, as well as in actual spacecraft flight code and tested in a high-fidelity spacecraft simulation test environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.