Abstract

The present study aimed to develop a pilot-scale integrated system composed of anaerobic biofilter (AF), a floating treatment wetland (FTW) unit, and a vertical flow constructed wetland coupled with a microbial fuel cell (CW-MFC) and a reactive bed filter (RBF) for simultaneously decentralized urban wastewater treatment and bioelectricity generation. The first treatment stage (AF) had 1450 L and two compartments: a settler and a second one filled with plastic conduits. The two CWs (1000 L each) were vegetated with mixed plant species, the first supported in a buoyant expanded polyethylene foam and the second (CW-MFC) filled with pebbles and gravel, whereas the RBF unit was filled with P adsorbent material (light expanded clay aggregate, or LECA) and sand. In the CW-MFC units, 4 pairs of electrode chambers were placed in different spacing. First, both cathode and anode electrodes were composed of graphite sticks and monitored as open circuit. Later, the cathode electrodes were replaced by granular activated carbon (GAC) and monitored as open and closed circuits. The combined system efficiently reduced COD (> 64.65%), BOD5 (81.95%), N-NH3 (93.17%), TP (86.93%), turbidity (94.3%), and total coliforms (removal of three log units). Concerning bioenergy, highest voltage values were obtained with GAC electrodes, reaching up to 557 mV (open circuit) and considerably lower voltage outputs with closed circuit (23.1 mV). Maximum power densities were obtained with 20 cm (0.325 mW/m2) and 30 cm (0.251 mW/m2). Besides the electrode superficial areas, the HRT and the water level may have influenced the voltage values, impacting DO and COD concentrations in the wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.