Abstract

Ionic conductive hydrogels are ideal frameworks to design and construct various flexible electronics owing to their biocompatibility, transmittance, elasticity, and high water content. Here, to enhance the conductivity, hybrid ionic/electronic conductive hydrogel networks, based on a crosslinked chitosan by metal ions (Ag+/Cu2+) and Ag nanowires, are developed as efficient current collectors in triboelectric nanogenerator for human motion energy harvesting. It is found that the concentration of AgNWs and the type of complexation metal ion play significant roles in the power output of the hydrogel based motion energy harvester. Meanwhile, the durability and washability of the device are investigated. On the other hand, hybrid hydrogels as self-powered sensors for temperature-stress dual sensing are fabricated, where good linear correlations with high sensitivities are demonstrated. These findings shed some lights on the rational design of hydrogel networks and their corresponding devices with the advantage of hybrid conduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.