Abstract

Emotions are synchronizing responses of human brain while executing cognitive tasks. Earlier studies had revealed strong correlation between specific lobes of the brain to different types of emotional valence. In the current study, a comprehensive three-dimensional mapping of human brain for executing emotion specific tasks had been formulated. A hybrid computational machine learning model customized from Custom Weight Allocation Model (CWAM) and defined as Custom Rank Allocation Model (CRAM). This regression-based hybrid computational model computes the allocated tasks to different lobes of the brain during their respective executive stage. Event Related Potentials (ERP) were obtained with significant effect at P1, P2, P3, N170, N2, and N4. These ERPs were configured at Pz, Cz, F3, and T8 regions of the brain with maximal responses; while regions like Cz, C4 and F4 were also found to make effective contributions to elevate the responses of the brain, and thus these regions were configured as augmented source regions of the brain. In another circumstance of frequent –deviant - equal (FDE) presentation of the emotional stimuli, it was observed that the brain channels C3, C4, P3, P4, O1, O2, and Oz were contributing their emotional quotient to the overall response of the brain regions; whereas, the interaction effect was found presentable at O2, Oz, P3, P4, T8 and C3 regions of brain. The proposed computational model had identified the potential neural pathways during the execution of emotional task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call