Abstract

The conditions of formation and properties of hybrid organic-inorganic composites based on epoxy polymer matrix and a mixture of magnetic and polymeric fillers are studied. Based on the study of physicochemical properties of fillers and composites, it was found that the introduction of a dispersion of magnetite modified with polymer shells and polyaniline doped with toluene sulfonic acid in the thermosetting epoxy composition in the amount of 2-6 wt.% provides the ability of composites to significant absorption and low reflection of IR and microwave range. It was found that the optimal content of the composition corresponds to the best mechanical properties of the obtained coatings, in particular, high microhardness. This makes it possible to use the proposed composition to obtain on its basis composite films and coatings for anti-radar purposes, which reduce the intensity of microwave radiation acting on the object and at the same time act as protective coatings on the surface of metals.

Highlights

  • In many practical applications, especially solar energy and military equipment there is a demand for surface coatings that effectively absorb IR radiation

  • Magnetic and electric properties of hybrid nanocomposite materials depend on the nature of the initial components, the amount of ferromagnetic and conductive fillers as well as polyaniline dopants, and obviously the preparation procedure

  • We suggest to use magnetite particles coated with polymer shell as magnetic filler in the composite and polyaniline doped with toluenesulfonic acid (TSA) as conductive component

Read more

Summary

Hybrid Composites with Low Reflection of IR Radiation

The conditions of formation and properties of hybrid organіс-inorganic composites based on epoxy polymer matrix and a mixture of magnetic and polymeric fillers were studied. Based on the study of physicochemical properties of fillers and composites, it was found that the introduction of a dispersion of magnetite modified with polymer shells and polyaniline doped with toluene sulfonic acid in the thermosetting epoxy composition in the amount of 2 - 6 wt.% provides the ability of composites to significant absorption and low reflection of IR and microwave range. It was found that the optimal content of the composition corresponds to the best mechanical properties of the obtained coatings, in particular, high microhardness. This makes it possible to use the proposed composition to obtain on its basis composite films and coatings for anti-radar purposes, which reduce the intensity of microwave radiation acting on the object and at the same time act as protective coatings on the surface of metals.

Introduction
Raman spectroscopy studies were performed using
Results and discussion
The influence of fillers on IR absorption and reflectivity
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.