Abstract
Bi-level optimization problems (BLOPs) are a class of challenging problems with two levels of optimization tasks. The usefulness of bi-level optimization in designing hierarchical decision processes prompted several researchers, in particular the evolutionary computation community, to pay more attention to such kind of problems. Several solution approaches have been proposed to solve these problems; however, most of them are restricted to the continuous case. Motivated by this observation, we have recently proposed a Co-evolutionary Decomposition-based Algorithm (CODBA-II) to solve combinatorial bi-level problems. CODBA-II scheme has been able to improve the bi-level performance and to bring down the computational expense significantly as compared to other competitive approaches within this research area. In this paper, we present an extension of the recently proposed CODBA-II algorithm. The improved version, called CODBA-IILS, further improves the algorithm by incorporating a local search process to both upper and lower levels in order to help in faster convergence of the algorithm. The improved results have been demonstrated on two different sets of test problems based on the bi-level production-distribution problems in supply chain management, and comparison results against the contemporary approaches are also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.