Abstract
This paper presents a co-evolutionary particle swarm optimization (PSO) algorithm, hybridized with noising metaheuristics, for solving the delay constrained least cost (DCLC) path problem, i.e., shortest-path problem with a delay constraint on the total "cost" of the optimal path. The proposed algorithm uses the principle of Lagrange relaxation based aggregated cost. It essentially consists of two concurrent PSOs for solving the resulting minimization-maximization problem. The main PSO is designed as a hybrid PSO-noising metaheuristics algorithm for efficient global search to solve the minimization part of the DCLC-Lagrangian relaxation by finding multiple shortest paths between a source-destination pair. The auxiliary/second PSO is a co-evolutionary PSO to obtain the optimal Lagrangian multiplier for solving the maximization part of the Lagrangian relaxation problem. For the main PSO, a novel heuristics-based path encoding/decoding scheme has been devised for representation of network paths as particles. The simulation results on several networks with random topologies illustrate the efficiency of the proposed hybrid algorithm for the constrained shortest path computation problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.