Abstract

Illicitly obtaining electricity, commonly referred to as electricity theft, is a prominent contributor to power loss. In recent years, there has been growing recognition of the significance of neural network models in electrical theft detection (ETD). Nevertheless, the existing approaches have a restricted capacity to acquire profound characteristics, posing a persistent challenge in reliably and effectively detecting anomalies in power consumption data. Hence, the present study puts forth a hybrid model that amalgamates a convolutional neural network (CNN) and a transformer network as a means to tackle this concern. The CNN model with a dual-scale dual-branch (DSDB) structure incorporates inter- and intra-periodic convolutional blocks to conduct shallow feature extraction of sequences from varying dimensions. This enables the model to capture multi-scale features in a local-to-global fashion. The transformer module with Gaussian weighting (GWT) effectively captures the overall temporal dependencies present in the electricity consumption data, enabling the extraction of sequence features at a deep level. Numerous studies have demonstrated that the proposed method exhibits enhanced efficiency in feature extraction, yielding high F1 scores and AUC values, while also exhibiting notable robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call