Abstract
Continuous blood pressure (BP) measurement is vital in monitoring patients' health with a high risk of cardiovascular disease. The complex and dynamic nature of the cardiovascular system can influence BP through many factors, such as cardiac output, blood vessel wall elasticity, circulated blood volume, peripheral resistance, respiration, and emotional behavior. Yet, traditional BP measurement methods in continuously estimating the BP are cumbersome and inefficient. This paper presents a novel hybrid model by integrating a convolutional neural network (CNN) as a trainable feature extractor and support vector regression (SVR) as a regression model. This model can automatically extract features from the electrocardiogram (ECG) and photoplethysmography (PPG) signals and continuously estimates the systolic blood pressure (SBP) and diastolic blood pressure (DBP). The CNN takes the correct topology of input data and establishes the relationship between ECG and PPG features and BP. A total of 120 patients with available ECG, PPG, SBP, and DBP data are selected from the MIMIC III database to evaluate the performance of the proposed model. This novel model achieves an overall Mean Absolute Error (MAE) of 1.23 ± 2.45 mmHg (MAE ± STD) for SBP and 3.08 ± 5.67 for DBP, all of which comply with the accuracy requirements of the AAMI SP10 standard.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.