Abstract
The electroencephalography (EEG) signal is an essential source of Brain-Computer Interface (BCI) technology implementation. The BCI is nothing but a non-muscle communication medium among the external devices and the brain. The basic concept of BCI is to enable the interaction among the neurological ill patients to others with the help of brain signals. EEG signal classification is an essential requirement for various applications such as motor imagery classification, drug effects diagnosis, emotion classification, seizure prediction/detection, eye state prediction/detection, and so on. Thus, there is a need for an efficient classification model that can deal with the EEG datasets more adequately with better classification accuracy, which will further help in developing the automatic solution for the medical domain. In this paper, we have introduced a hybrid classification model for eye state detection using electroencephalogram (EEG) signals. This hybrid classification model has been evaluated with the other traditional machine learning models, eight classification models (Prepossessed + Hypertuned) and six state-of-the-art methods to assess its appropriateness and correctness. This proposed classification model establishes a machine learning-based hybrid model for the classification of eye state using EEG signals with greater exactness. It is also capable of solving the issue of outlier detection and removal to address the class imbalance problem, which will offer the solution toward building the robotic or smart machine-based solution for social well-being.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.