Abstract

This paper introduces a novel hybrid algorithm for emotion classification based on electroencephalogram (EEG) signals. The proposed hybrid model consists of two layers: the first layer includes three parallel adaptive neuro-fuzzy inference systems (ANFIS), and the second layer called the adaptive network comprises various models such as radial basis function neural network (RBFNN), probabilistic neural network (PNN), and ANFIS. It is examined that the feature distribution graphs of the dataset, which includes three emotion classes: positive, negative, and neutral, and selected the most appropriate features for classification. The three parallel ANFIS structures were trained using the selected features as input vectors, and the outputs of these models were combined to obtain a new feature vector. This feature vector was then used as the input to the adaptive network, which produced the output of emotion prediction. In addition, it is evaluated the accuracy of the network trained using only the first features of the dataset. The hybrid structure was designed to enhance the system's performance, and the best accuracy result of 96.51% was achieved using the ANFIS-ANFIS model. Overall, this study provides a promising approach for emotion classification based on EEG signals. 

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.