Abstract

The hybrid chitosan-ZnO nanoparticles (C@ZnO NPs) are synthesized and coated on Silk fibroin-polyvinyl alcohol (SF-PVA) composite film by a sonochemical coating process. These are systematically studied for their synergistic antibacterial activity and reported. The coated composite films show the excellent antibacterial activity against Gram-positive and Gram-negative bacteria. The composite films are characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) studies. The specific surface area and porosity are studied by Brunauer-Emmett-Teller (BET) analysis under nitrogen gas adsorption. The swelling degree, mechanical property and cell viability study of coated and uncoated composite films are investigated. The results showed that the specific surface area, porosity, swelling degree, and mechanical property of coated composite films increased with increasing the concentrations of C@ZnO NPs on SF-PVA composite film. Cell viability study confirmed the cytocompatible nature of all the C@ZnO NPs coated composite films. Thus, obtained properties of composite films reveal the potential of this material which can be used as antibacterial wound dressing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.