Abstract
In this paper, we propose hybrid Chebyshev polynomial scheme (HCPS), which couples the Chebyshev polynomial scheme and the method of fundamental solutions into a single matrix system. This hybrid formulation requires solving only one system of equations and opens up the possibilities for solving a large class of partial differential equations. In this paper, we consider various boundary value problems and, in particular, the challenging Cauchy–Navier equation. The solution is approximated by the sum of the particular solution and the homogeneous solution. Chebyshev polynomials are used to approximate a particular solution of the given partial differential equation and the method of fundamental solutions is used to approximate the homogeneous solution. Numerical results show that our proposed approach is efficient, accurate, and stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.