Abstract

This paper reviews the ongoing failure of hybrid transgenic Bt (Bacillus thuringiensis) cotton unique to India. The underlying cause for this failure is the high cost of hybrid seed that imposes a suboptimal long-season low plant density system that limits yield potential and has associated elevated levels of late-season pests. Indian hybrid Bt cotton production is further complicated by the development of resistance to Bt toxins in the key pest, the native pink bollworm (Pectinophora gossypiella Saunders, PBW), resulting in increased insecticide use that induces ecological disruption and outbreaks of highly destructive secondary pests. Rainfed cotton production uncertainty is further exacerbated by the variable monsoon rains. While hybrid cotton produces fertile seed, the resulting plant phenotypes are highly variable preventing farmers from replanting saved seed, forcing them to buy seed yearly (i.e., market capture), and effectively protecting industry Intellectual Property Rights (IPRs). The lessons gained from the ongoing market failure of hybrid Bt cotton in India are of utmost importance to its proposed introduction to Africa where, similar to India, cotton is grown mainly in poor rainfed smallholder family farms, and hence similar private–corporate conflicts of interest will occur. Holistic field agroecological studies and weather-driven mechanistic analyses are suggested to help foresee ecological and economic challenges in cotton production in Africa.High-density short-season (HD-SS) non-hybrid non-genetically modified irrigated and rainfed cottons are viable alternatives for India that can potentially produce double the yields of the current low-density hybrid system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call