Abstract

In this paper, we propose hybrid backscatter communication for wireless-powered communication networks (WPCNs) to increase transmission range and provide uniform rate distribution in the heterogeneous network (HetNet) environment. In such HetNet, where the TV tower or high-power base station (macrocell) coexists with densely deployed small-power access points (e.g., small-cells or WiFi), users can operate in either bistatic scatter or ambient backscatter, or a hybrid of them, given that the harvested energy from the dedicated or ambient RF signals may not be sufficient enough to support the existing harvest-then-transmit protocol for WPCN, which is extended to the wireless-powered heterogeneous network (WPHetNet). Considering the hybrid and dual mode operation, we formulate a throughput maximization problem depending on the user location, namely Macro-zone or WiFi-zone. After performing the optimal time allocation for the above operation, we show that the proposed hybrid backscatter communication can increase the transmission range of WPHetNet, while achieving uniform rate distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call