Abstract

In this work, we use an hybrid atomistic–continuum (HAC) simulation method to study transient and steady isothermal flows of Lennard-Jones fluids near interfaces. Our hybrid method is based on a domain decomposition algorithm. The flow domain is composed of two overlapping regions: an atomistic region described by molecular dynamics, and a continuum region described by a finite volume discretization of the incompressible Navier–Stokes equations. To show the interest of such an hybrid method to compute flows near fluid/solid interface, we first applied our hybrid scheme to the classical Couette flow, where the moving wall is modelled at the atomistic scale. In addition, we also studied an oscillatory shear flow. Then, to compute flows near fluid/fluid interface, we applied our method to a two-phase Couette flow (liquid/gas), where the interface is modelled at the molecular scale. We show that hybrid results can sometimes differ from those provided by analytical solutions deduced from continuum mechanics equations combined with usual boundary/interface relations. For the Couette and oscillatory shear flows, a good agreement is found between hybrid simulations and macroscopic analytical solutions, however, we noticed that the fluid in contact with the wall can be more entailed than what expected. For the liquid/gas Couette flow, the hybrid simulation exhibits an unexpected jump of the velocity in the interfacial region, corresponding to a partial slip between the two fluid phases. Those interesting results highlight the interest of using an HAC method to deal with systems for which surfaces/interfaces effects are important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.