Abstract
A hybrid artificial neural network−genetic algorithm (ANN−GA) numerical technique was successfully developed to model, to simulate, and to optimize a dielectric barrier discharge (DBD) plasma reactor without catalyst and heating. Effects of CH4/CO2 feed ratio, total feed flow rate, and discharge voltage on the performance of noncatalytic DBD plasma reactor were studied by an ANN-based simulation with a good fitting. From the multiobjectives optimization, the Pareto optimal solutions and corresponding optimal process parameter ranges resulted for the noncatalytic DBD plasma reactor owing to the optimization of three cases, i.e., CH4 conversion and C2+ selectivity, CH4 conversion and C2+ yield, and CH4 conversion and H2 selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.