Abstract

In this article, we propose a hybrid artificial bee colony (ABC) algorithm to solve a parallel batching distributed flow-shop problem (DFSP) with deteriorating jobs. In the considered problem, there are two stages as follows: 1) in the first stage, a DFSP is studied and 2) after the first stage has been completed, each job is transferred and assembled in the second stage, where the parallel batching constraint is investigated. In the two stages, the deteriorating job constraint is considered. In the proposed algorithm, first, two types of problem-specific heuristics are proposed, namely, the batch assignment and the right-shifting heuristics, which can substantially improve the makespan. Next, the encoding and decoding approaches are developed according to the problem constraints and objectives. Five types of local search operators are designed for the distributed flow shop and parallel batching stages. In addition, a novel scout bee heuristic that considers the useful information that is collected by the global and local best solutions is investigated, which can enhance searching performance. Finally, based on several well-known benchmarks and realistic industrial instances and via comprehensive computational comparison and statistical analysis, the highly effective performance of the proposed algorithm is favorably compared against several algorithms in terms of both solution quality and population diversity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.