Abstract

AbstractHybrid materials composed of LiMPO4 (M = Fe or Co) with multiwalled carbon nanotubes (MCNTs) were synthesized by tethering lithium phosphoolevins on isolated stochastically disordered MWCNTs as well as on ordered 3D MWCNT arrays via solution based impregnation routes. Ordered 3D arrays of MWCNT monoliths comprising MWCNTs with nominal tube diameters of 60 and 200 nm were synthesized by a catalyst free, template based method, with porous aluminum oxide (PAOX) acting as a template. Consecutive selectiveetching processes gave free standing aligned 3D carbon nanotube (CNT) architectures that were used as supporting cathode structures for electroactive LiCoPO4. LiCoPO4 nanoparticle suspensions derived from an ethanol based organic phosphate source turned out to be superior for the tethering of LiCoPO4 nanoparticles onto the 3D aligned CNT arrays compared to an aqueous based tethering route, thus giving hybrid materials with better electrochemical battery performance compared to materials generated by the latter method. Li ion extraction within the ordered 3D CNT/LiCoPO4 composites seems to be a two‐step process and the Li intercalation a one‐step process, highlighting the enhanced kinetics of the Li insertion process in the 3D CNT/LixCoPO4 composite in comparison to a particulate mixture of LixCoPO4 that is typically present in a conventional carbon/LiCoPO4 cathode composite system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.