Abstract

Hydrodynamic cavitation (HC) was emerged as one of the most potential technologies for industrial-scale wastewater or water treatment. In this work, a combined system of HC, peroxymonosulfate (PMS) and UVC irradiation (HC - PMS - UVC) was constructed for effective degradation of carbamazepine. The effect of several experimental parameters and conditions on the carbamazepine degradation was considered. The results show that the degradation and mineralization rates increases with an increase in the inlet pressure from 1.3 to 4.3 bars. The rates of carbamazepine degradation with the combined processes of HC - PMS - UVC, HC - PMS, HC - UVC, and UVC - PMS were 73%, 67%, 40% and 31%, respectively. Under the optimal conditions of reactor, the carbamazepine degradation and mineralization rates were 73% with 59%, respectively. The kinetics of carbamazepine degradation was studied applying a fractal-like approach. So, a new model was proposed by combining first order kinetics model and fractal-like concept. The obtained results show that the proposed fractal-like model gives a better performance compared with traditional first order kinetics model. It has been demonstrated that the HC - PMS - UVC process is a potential treatment method to destroy pharmaceutical pollutants from water and wastewater sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.