Abstract

A detailed calculation of the ion drag force acting on a single grain in a collisionless Maxwellian plasma with an arbitrary velocity of the ion flow is carried out. The traditional binary collision approach to the problem is combined with the linear kinetic formalism. It is shown that for a pointlike particle the binary collision approach yields correct results provided that the effective plasma screening length is chosen appropriately. The correct choice follows from the self-consistent kinetic theory. On the other hand, the binary collision approach accounts consistently for the effects of finite grain size and grain charging. Taking these effects into account an expression for the ion drag force is obtained. Calculations are performed for a typical (exemplary) set of complex plasma parameters. The relevance for recent complex plasma experiments is briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call