Abstract
High throughput analysis and large scale integration of biological data led to leading researches in the field of bioinformatics. Recent years witnessed the development of various methods for disease associated gene prediction and disease comorbidity predictions. Most of the existing techniques use network-based approaches and similarity-based approaches for these predictions. Even though network-based approaches have better performance, these methods rely on text data from OMIM records and PubMed abstracts. In this method, a novel algorithm (HDCDGP) is proposed for disease comorbidity prediction and disease associated gene prediction. Disease comorbidity network and disease gene network were constructed using data from gene ontology (GO), human phenotype ontology (HPO), protein-protein interaction (PPI) and pathway dataset. Modified random walk restart algorithm was applied on these networks for extracting novel disease-gene associations. Experimental results showed that the hybrid approach has better performance compared to existing systems with an overall accuracy around 85%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.